当前位置:首页 > 投稿 > 《JACS》综述:量子光引发剂——迈向新兴的光固化技术!

《JACS》综述:量子光引发剂——迈向新兴的光固化技术!

2023-06-10 20:10:09 发表

丫空间介绍 ·丫空间(www.yaspace.cn),全国性活动内容平台,涉及展览展示、会议、庆祝活动、团建拓展、私人活动、竞技赛事、拍摄等各类活动图文、短视频内容的记录、传播。 ·用户通过丫空间可以浏览、筛选各类活动内容、活动商家、活动资源;商家通过丫空间可以发布、分享场地或业务信息、活动图文、短视频等活动内容进行市场营销。 ,丫空间已汇聚特色场地,虚拟空间,秀场/发布中心:艺术/展览馆,演出场馆。会所/俱乐部,公寓别墅/美趴,商场/步行街,酒店/度假村,影棚/演播厅,体育场馆,户外/广场。婚礼/宴会场地 会议中心,会展中心、剧场/剧院,众创空间/路演,会议室/培训厅,咖啡/书店、酒吧/餐厅、游船/游艇等全国各类场地资源。

半导体纳米晶体是一类有前景的光催化剂,其在再生能源、生物医学和环境可持续发展等领域具有广泛的应用。它们具备灵活的光谱可调性、化学稳定性和可观的光催化效率,其功能特性取决于多个参数的复杂影响,包括成分、尺寸、结构、表面涂层和环境条件等。已有研究证明了量子约束的半导体纳米晶体可作为自由基聚合的光引发剂(PI),并为其光催化作用机理提供了见解。然而,早期的一些工作效率低下,并需要高强度光照射,这限制了它们在现实生活中的应用。近年来,纳米晶体合成和表面工程技术的发展为下一代量子PI开辟了道路。

以色列希伯来大学Uri Banin等人综述了纳米晶体光催化剂的研究进展,总结了半导体纳米晶体作为光引发剂、可逆失活自由基聚合(RDRP)光催化剂的研究现状,并指出了该领域的前景和挑战。该研究以题为“Quantum Photoinitiators: Toward Emerging Photocuring Applications”的综述文章发表在《Journal of the American Chemical Society》上。

【半导体纳米晶的光催化研究】

在合金、掺杂态纳米晶、半导体异质结和半导体-金属复合物中引入具有新型、复杂组成和结构的纳米材料,可以获得想要的化学和电学性能(图1)。近年来,人们对控制半导体纳米晶的光催化活性有了深入的研究,主要是将其用于光捕获,通过光催化产生清洁的H2燃料以及还原CO2。合理设计纳米催化剂的成分可以控制其性质、能隙、能带排列以及其他电子和化学特性。纳米晶体的形态和尺寸也起重要作用,与较小的纳米颗粒相比,大的半导体纳米晶体提供了更高的吸收截面和更大的表面积量子光,更易克服电荷载流子的复合。此外,还有表面涂层和环境条件的影响(图2c,d)。表面涂层是胶体纳米晶体的重要组成部分,它通过钝化表面缺陷而对其光催化活性产生重大影响,并可能影响分子进入纳米晶体表面的可及性。环境条件也会影响其表面效果以及光催化效率。如溶剂和pH值会影响表面配体的致密性、纳米晶体的胶体稳定性以及反应性。

量子光_量子纠缠 单比特量子隐形传态_中国量子计算研究获突破 成功研发半导体量子芯片

图1新型半导体纳米晶体的TEM图像

图2用于增强光催化活性的纳米晶体结构

【活性氧的形成】

纳米晶合成以及增强其光催化活性的技术发展也推动了对活性氧(ROS)形成的研究。在水中好氧条件下,半导体-金属异质结与原始半导体纳米棒相比,氧消耗显着增加,同时形成的总ROS增加(图3)。这归因于异质结中增强的电荷分离,以及增强的金属域的催化功能(图3)。研究发现所得产物及其含量强烈依赖于颗粒的组成和形态(图3b)。图3d,e总结了纳米粒子在光照下直接发生电荷转移可能形成的主要反应性产物,包括因水和氢氧化物的氧化而产生的羟基、分子氧还原产生的超氧化物和过氧化氢等。这种光催化活性有望应用于有机废物消耗、抗菌活性和光动力疗法等领域。

图3纳米晶体形成光催化活性氧

【纳米晶光引发剂】

“量子材料”早在1992年就被Hoffman等人用于光引发剂,作者推测由于减少了光散射并具有较高的表面积,纳米结构将是更好的引发剂。聚合反应可能是通过自由基阴离子或单体的直接还原而进行,主要取决于纳米晶体的光引发活性。与传统的有机光引发剂相比,纳米晶体的优势是能兼具光引发和填料作用的多功能性,如机械性能等。这些早期研究为量子光引发剂的发展铺平了道路,而当前光引发剂的研究致力于改善纳米晶体的合成以满足光催化应用的需求。Pawar等人开发出能够在近紫外线范围内激发的高效量子PI,其能够在商业3D打印机中用作光引发剂,实现工业化的光固化技术(图4d)。这样的3D光刻打印机能够轻松地生产复杂结构量子光,这往往是常规制造技术所无法实现。这些技术中的3D打印基于局部聚合过程,该过程由光照射和光引发剂形成反应性产物而触发。这种增材制造技术能在水中进行高效聚合,为新兴的生物医学应用开辟了新的道路,例如构造用于组织工程的支架、用于药物输送的智能胶囊、用于制造智能形状的记忆聚合物等等。

图4 纳米晶光引发剂的机理与应用

【纳米晶光催化剂在新型聚合方式中的研究】

量子PI还在新型聚合方式(例如可逆失活自由基聚合RDRP)中得到研究,这是一类以链传播快速且可逆地激活/失活为特征的过程。Egap小组通过光控,利用CdSe量子点裂解烷基溴生成自由基,来控制有机溶剂中各种丙烯酸酯单体的聚合。此外,纳米晶体还适用于光诱导的电子/能量转移(PET)-RAFT聚合。Matyjaszewski将碳点用作光氧化还原催化剂来调节RAFT聚合。其他半导体材料ZnO和CdSe量子点也很快被发现可用于极性溶剂中各种聚合物的合成,并能在实现低PDI的同时通过改变光强度来控制聚合速率。总而言之,纳米晶体作为光催化剂效果更好、聚合速率更高、负载量更低,从而提供了一种可靠的方法来得到含量低的嵌段共聚物作为光催化剂。这展现了纳米晶体在新型聚合过程中的巨大潜力,但目前还需要更多的研究来提高光致聚合的效率。

总结:对光催化纳米晶体的研究为将其用作自由基聚合过程的光引发剂奠定了基础,在实际的聚合工程和先进的印刷技术中有很大的潜力。量子PI凭借其独特的优势将具有更大的竞争力,有望作为新兴技术应用于例如有细胞存在情况下的组织工程支架的3D打印等。然而,目前量子PI的功能实现仍然面临着一些挑战,包括作用机理、聚合效率以及光引发活性等问题。未来这些问题的解决将进一步丰富量子PI的性能,推动其实际应用。

原文链接:

以上内容为网友投稿,不代表丫空间立场。丫空间对内容的真实性和准确性不负责任。如有侵权或错误信息,请第一时间联系我们进行删除和修正。